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THE EFFECT OF RAKING THE AITERON TIPS ON THE
LATERAT,-CONTROL AND HINGE-MOMENT CHARACTERISTICS OF
A 20-PERCENT-CHORD PARTTIAL-SPAN OUTBOARD AILERON ON

A WING WITH LEADING EDGE SWEPT BACK 51.3°

By Alexander D. Hammond
SUMMARY

A wind-tunnel investlgation was made at low speed to determine the
lateral-control and hinge-moment characteristics of a 20-percent-chord
unsealed partiasl-spen outboard alileron having various plan forms on &
semispan-wing model with aspect ratio of 3.06, taper ratio 0.49, and
51.3° sweepback of the wing leading edge. The various aileron plan
forms were obtained by raking the aileron tips from 20° in the outboard
direction to 80° in the inboard direction.

These changes in alleron plan form had an apprecisble effect on the
aileron hinge-moment parameter- Cha, the aileron with tips parallel to

the plane of symmetry having lower velues of Cha than the alleron with

tips normal to the hinge line. These changes in eileron plan form had
only slight effects on the varistion of rolling-moment coefficient with
aileron deflection CZa for ailerons having the same aresa.

INTRODUCTION

An investigation of a 51.3° sweptback wing equipped with 16.7-

- percent-chord plain flaps and ailerons having varlous spans was made

in the Langley 300 MPH T- by 10-foot tunnel and the results are presented
in reference 1. At that time, the plan form of a 40.k-percent-semispan
outboard aileron was modified so that the inboard tip of the aileron was
parallel to the plane of symmetry instead of perpendicular to the hinge
line. This change in aileron plan form resulted in a large reduction in

CONEIRENTTAL
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2 SECURITY INFORMATION NACA RM L51H29

the slope of the curves of hinge-moment coefficient against small
aileron deflection and a relatively small reduction in aileron
effectiveness.

The present paper contains the results of a more extenslve investi-
gation, made in the Langley 300 MPH T7- by 10-foot tunnel, of the effect
. of similar veristions in alileron plan form on hinge moment and control

effectiveness. The data presented and discussed hereln were cbtalned
on a 20-percent-chord, partial-spen, outboard, plain-radius-nose,
unsealed, flat-sided aileron on & wing having a leading-edge sweepback
of 51.3°%, aspect ratio 3.06, taper ratio 0.49, and NACA 65;-012 airfoil

perpendicular to the 55.6-percent-chord line. The change of aileron
plen form was accomplished by raking the aileron tips through s range
of angles which extended from 20° cutboard (20°) to 80° inboard (-80°).

Characteristics of the wing in pitch were determined through a
large angle-of-attack range for the neutral alleron condition. Rolling-
moment, yawing-noment and hinge-moment characteristics were determined
for all the aileron plan forms investigeated.

DEFINITIONS AND SYMBOLS

The forces and moments on the wing are presented about the wind
axes which, for the conditions of these tests (zero yeaw), correspond to
the stability axes. (See fig. 1.} The axes intersect at the plane of
symmetry and the chord plane of the model at 27.8 percent measn aerody-
namic chord as shown in figure 2.

" The rolling-moment and yawing-moment coefficients determined on the
semispan wing represent the aserodynamic effects that occur on e complete
wing as the result of deflection of one alleron. The 1lift, drag, and
pitching-moment coefficients determined on the semispen wing (with the
aileron neutral) represent those that occur on a complete wing.

The symbols used in the presentation of results are as follows:

C;  lift coefficient ( o ;emiﬂ mod 1)
g

d.re.g coefficient (Twice dIB.E Qf aemisgn model

c
D as

Cn pitching-monent coefficient referred to 0.278%

(Twice pitching moznent of semispen mode%)
gSt
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rolling-moment coefficlent -IL)

yawing-moment coefficient <}E—
qSh

alleron hinge-moment coefficient

H
(?q(érea moment of aileron rearward of and sbout aileron hinge axis)

twice spen of semispan model, 6.066 feet

aspect ratio of wing, 3.06 (;2/é)

twice area of semispan model, 12.06 square feet
rolling momenf due 4o alleron deflection, foot-pounds
yewing moment due to alleron deflection, foot-pounds

aileron hinge moment, Ffoot-pounds
free-stream dynamic pressure, pounds per square foot (%pvé>

free-stream veloclty, feet per sé&cond
mass density of air, slugs per cublc foot
lateral distance from plane of symmetry, feet

local wing chord measured In planes perallel to wing plane of
symmetry

local wing chord measured in planes perpendicular to wing
0.556¢c line

/2
wing mean serodynamic chord, 2.087 feet g f cPay
0

local aileron chord measured along wing-chord plane from hinge
axls of alleron to trailing edge of aileror in planes parallel
to wing plane of symmetry
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cq' local aileron chord measured along wing-chord plene from hinge
exis of alleron to trailing edge of ailleron in planes perpen-~
dicular to 0.556¢c line

a angle of attack with respect to chord plane at root of model,
degrees
5] aileron deflection, corrected for deflection under load, relative

to wing-chord plane and measured in plane perpendiculer to
&ileron hinge axis, degrees

“h _@;q A
one ~(322),

(Bcz
"o "\& /,

The subscripts 3% and o outside the parentheses indicate that
the factor was held constant. All slopes were measured Iln the vicinity
of 0° angle of attack and 0° aileron deflection.

CORRECTIONS

All the test dats have been corrected for jJjet~boundary and reflection-
plane effects by the method of reference 2. Blockage corrections as
determined from reference 3, to account for the constrictlion effects
produced by the wing model and wing wake, were also applied. Alleron
defiections have been corrected for deflection under load, but the
rolling-moment-coefficient data have not been corrected for the small
amount of wing twist produced by the alleron deflection.

APPARATUS AND MODEL

The semispen sweptback-wing model wes mounted vertically in the
Lengley 300 MPH T- by 10-foot tunnel, as shown in figure 3, with the
celling serving as a reflection plane. The model was mouhted on the
balance system in such a manner that all forces and moments acting on
the model could be measured. A small clearance gap was maintained
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between the model and the tunnel celling end a smell end plate was
attached to the root of the model to deflect the spanwlise flow of air
that enters the tunnel test section through the opening. The alleron
hinge moments were measured with an electric resistance-type strain

gage.

The model used for these tests was bullt of aluminum to the plan-
form dimensions shown in figure 2. The model had an aspect ratio of
3.06, a taper ratio of 0.49, and a leading-edge sweepback of 51.3°.

The wing sections perpendicular to the 55.6-percent-chord line were of
NACA 651-012 airfoil profile.

The model was equipped with a 20-percent-chord flat-sided unsesled
alleron which had & plain radius nose. The alleron span with aileron
tips parallel to the plane of symmetry was 39 percent of the wing semi-
span, and the outboard aileron %ip was located 6.8 percent of the wing
semispen inboard of the wing tip. The wing end alleron were equipped
with removable blocks such that elther or both the tips of the alleron
could be raked &s shown Iin figure 2. Angles obtalnable between ends of
the sileron and the plane of symmetry were 20°, 0°, -20°, -41.7° (tip
of aileron perpendicular to hinge line), and -80°. A positive value
designates the rake angle measured from the plane of symmetry outboard
toward the wing tip.

TESTS

All the tests were made at an average dynamic pressure of
148.5 pounds per square foot which corresponds to a Mach number of 0.328
and a Reynolds number of L,450,000 based on the wing mean serodynamic
chord of 2.087 feet.

Wing-angle-of-attack and lateral-control tests with the aileron
deflected verious smounts from 0° to -30° were made through an angle-of-
attack range from -28° to 28° for the various alleron plan forms
investigated.

RESULTS ARD DISCUSSION

Wing Aerodynamic Characteristics

The serodynsmic characteristics in pitch of the wing, equipped with
e flat-sided aileron, are presented in figure 4. The same data through
a Mach number range from 0.302 to 0.913 are presented in reference 4 for
the subject wing equipped with a true contour {cusped trailling edge)
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alleron. The aerodynamic characteristice (fig. 4) are in goocd agree-
ment with the aerodynamic characteristics at low Mach numbers presented
and discussed in reference 4. For this reason the aerocdynamic char-
acteristicas in pitch are not discussed in the present paper.

Iateral-Control and Hinge-Moment Characteristics

The variation of the lateral-control and hinge-moment characteristics
with aileron deflection and wing angle of attack for each of the aileron
plan forms are presented in figures 5 to 9. The lateral-control param-
eters CZS’ Cha’ and Ch“ determined from the data in figures 5 to 9

are shown plotted against the angle of the variable tip of the aileron
relative to the plane of symmetry in figure 10 and are summarized in
table I,

The alleron span and spenwise locations are the same for all the
aileron plan forms of this investigation as measured at the hinge line.
Consideration has been given however, to the effective span and span-
wise locations of the various aileron configurations in the discussion
of the lateral-control characteristics. This effective span is defined
es the lateral distance, in the usual spenwise direction, between the
midpoint of a line along the inboard aileron tip from the hinge line to
the trailing edge of the aileron to the midpoint of a similar line along
the outboard aileron tip. The effective spanwise location 1s defined as
the spanwise location of the effective alleron spen.

In general, at a given alleron deflection, the variations of the
rolling-moment, yawing-moment, and hinge-moment coefficients with angle
of attack for the verious aileron plan forms have the same trends as
the aileron with tips perallel to the plane of symmetry.

Rolling-moment characteristics.- Except for the angles of attack
near wing stall, the rolling-moment coefficients generally varied nearly
linearly with aileron deflection up to about 20° aileron deflection and
were relatively unaffected by angle-of-atteck variations (figs. 5 to 9).
At a given aileron deflection, as the angle of attack was increased,
the rolling-moment coefficlents generally decreased; this decrease was
greater for large alleron deflections than for small ones.

As the inboard tip of the aileron was raked negatively (that is,
the angle increased inboard from the free-stream direction) the effective
span of the alleron was increased, the effective spanwise location moved
inboard, and an increase in the alleron parameter Cza resulted, as

shown in figure 10. As the angle of the outboard tip of the aileron
vas lncreased in the inboard direction, the effective spen of the
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aileron and C;_-~ decreased. When both tips of the alleron were kept
s

parallel and the aileron tips were raked inboard up to -41.7°, the
effective spanwise locatlon moved inboard, there was a slight increase
in the effective span of the aileron, and CZS increased slightly

(fig. 10). The largest value of CZS occurred for the aileron which

haed the largest effective spen investigated (inboard tip -80° end the
outboard tip 20°, fig. 8); the smallest value of Cy occurred for the

aileron which had the smallest effective span (inboard tip 20° and the
outboard tip -80°, fig. 9). These trends indicate that the ailerom
effectiveness perameter CZS is dependent on the effective span and

effective spanwlise location of the control surface and that, for a -
given aileron areas, plen form has little or no effect on CZS' The

results of an investigation in which changes in aileron span'and span-
wise location indicate the same trends in aileron effectiveness param-
eter Cla as are shown in the present investigation when the effective

span and spenwise locations were changed are presented 1ln reference 5.

Aileron hinge-moment characterlistlics.- For the various aileron plan
forms the values of the aileron hinge-moment coefficient Cp =at a
given aileron deflection (figs. 5 to 9) generally beceme more negative
as the wing angle of attack Increased. A fairly linear variation of
Cnh Wwith alleron deflection for the range of +10° 8 was obtained for
all the aileron plan forms Ilnvestigated at angles of attack less than
16.6°. The veriation of Cp with & for the upgoing aileron generally
decreased as the value of ¢ increased.

The variation of alleron hinge-moment perameters C}:,_6 and Chc:.

with the angle of the variable tip of the aileron (fig. 10) shows that,
.as the inboard tip was raked inboard or as both the inboard and outbosrd
tips were kept parallel while both tips were raked up to epproximately
-41.7° (at which angle the alleron tips were perpendicular to the hinge
line), Crig and Ch@' increased. As the outboard aileron tip was raked

o
up to approximately -60 , Ch5 decreased, and Cha decreased but only

in the range of rake angles from 20° to 0°. The date in fligure 10 also
show that variation of the angle of the inboard tip of the aileron
produced larger changes in Cha than does the variation of the angle

of the outboard aileron tip.

As mentioned previously, the plan form of the alleron of reference 1
was modified so that the inboard tip of the aileron was parallel to the.
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plane of symmetry instead of normal to the hinge axis. Although a
direct asgreement of the results of the present investigation and the
results of reference 1 for the same aileron-plan-form change should not
be expected because of other geometric differences, it should be noted
that the results do show the same trends in CZB’ Crye and  Cp .

In summation it is indicated that, for ailerons having the same
area, variation of aileron plan form has an appreciable effect on the
elleron hinge -moment perameter Chs’ although plan form has little or

no effect on CZS' The allerons with tips parallel to the plane of
symnetry had lower values of Ch5 than the ailerons with tips normal to
the hinge axis. The configuration which gave a large value of CZ5

(the inboard tip of the alleron was at an angle of approximately -60°
with respect to the plane of symmetry) also gave the largest negative
value of Chs’ The aileron with tips parsllel and at an angle of 20°

with respect to the free stream had a low value of the ratio ChS/Cz6
and also the lowest value of Cha'

CONCLUSIONS

A wind-tunnel investigation made at low speed to determine the
lateral-control and hinge-moment characteristics of a 51.3° sweptback
semispan wing equlpped with an unsealed partial-span outboard alleron
having various plan forms indicated that:

1. In general, for allerons having the same ares, variation of
aileron plan form has an appreciable effect on the alleron hinge-moment
parameter Cha’ although plan form had little or no effect on the

variation of rolling-moment coefficient with aileron deflection CZS.

2. The aileron with tips parallel to the plene of symmetry had
lower values of Cpy than the aileron whose tips were normal to the

hinge line.

Langley Aeronautical laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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TABLE I.- SUMMARY CF THE LATERAL~-CONTROL CHARACTERISTICS OF 20~PERCENT-CHORD

AILERONS OF VARIOUS ATLERQN PLAK FORMS ON THE 51.3° SWEPTBACK WING

Aileron plan form
Angle of | Bagle of | Cig | Cng Chy, Ch,,/" ly | Alleron span| gileren seun
inboard tip | outboard tip
(deg) (Geg)
20 20 -0.00048 | -0.002k | -0,000%| 5.00 0.393b/2 0.383b/2
0 0 -.00050 | -.0031| -.0002| 6.20 .393b/2 .393b/2
~41.7 ~b1,7 ~.00060 | -.0038 | -.0005| 6.33 .393b/2 A03p/2
-80 80 -.00054 | ~.0028 | -.000k| 5.18 .393b/2 413b/2
20 - 0 -.00038 | -.0026 | -.0002| 6.84 .393b/2 .359b/2
-20 0 -.00060| -.0035 | -.0004| 5.83 .3930/2 J4an/2
~41.7 0 -.00068 | -.0038 | -,0004{ 5.59 .393b/2 42 /2
-80 0 -.00068 | -.0035 | -.0002( 5.16 .393b/2 J500/2
0 20 -.00053 | -.0032| -.0008| 6.0k .393b/2 A41To/2
0 41,7 -.00047 | ~.0030 | ~.0003| 5.32 .393b/2 .369b/2
0 80 -.00042 | -.0025 | -.0004k| 5.95 .393b/2 .34Tn/2
-80 20 -.000T0 | -.0030 | -.0004| L.28 .393p/2 .183v/2
20 -80 -.00042 | -.0022 | -.0004( 5.2 .3930/2 .313p/2
. W
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Figure 1.- System of axes, control-surface hinge moments, and deflections.
Positive directions of forces, moments, and deflections are indicated
by the arrows.
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-

(a) Outboard and inboard aileron tips parallel to-the plane of symmetry.
- Figure 5.~ Variation of lateral-control and hinge-moment characteristics

with aileron deflection on the 51.3° sweptback wing with the inboard
and outboard aileron tips parallel, '
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Figure 5.- Continued.
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- Figure 5.~ Continued.
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Figure 6.— Variation of lateral—control and hinge-moment characteristics

with aileron deflection on the 51.3° sweptback wing with the outboard
aileron tip parallel to the plane of symmetry.
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Figure 7.- Variation of lateral-control and hinge—-moment characteristics
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